Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors

Identifieur interne : 000749 ( Main/Exploration ); précédent : 000748; suivant : 000750

Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors

Auteurs : Zhenggui Du [République populaire de Chine] ; Hangyu Wan ; Yu Chen ; Yang Pu ; Xiaodong Wang

Source :

RBID : PMC:5287972

Abstract

Abstract

Intraoperative frozen pathology is critical when a breast tumor is not diagnosed before surgery. However, frozen tumor tissues always present various microscopic morphologies, leading to a high misdiagnose rate from frozen section examination. Thus, we aimed to identify breast tumors using bioimpedance spectroscopy (BIS), a technology that measures the tissues’ impedance. We collected and measured 976 specimens from breast patients during surgery, including 581 breast cancers, 190 benign tumors, and 205 normal mammary gland tissues. After measurement, Cole-Cole curves were generated by a bioimpedance analyzer and parameters R0/R, fc, and α were calculated from the curve. The Cole-Cole curves showed a trend to differentiate mammary gland, benign tumors, and cancer. However, there were some curves overlapped with other groups, showing that it is not an ideal model. Subsequent univariate analysis of R0/R, fc, and α showed significant differences between benign tumor and cancer. However, receiver operating characteristic (ROC) analysis indicated the diagnostic value of fc and R0/R were not superior to frozen sections (area under curve [AUC] = 0.836 and 0.849, respectively), and α was useless in diagnosis (AUC = 0.596). After further research, we found a scatter diagram that showed a synergistic effect of the R0/R and fc, in discriminating cancer from benign tumors. Thus, we used multivariate analysis, which revealed that these two parameters were independent predictors, to combine them. A simplified equation, RF = 0.2fc + 3.6R0/R, based on multivariate analysis was developed. The ROC curve for RF′ showed an AUC = 0.939, and the sensitivity and specificity were 82.62% and 95.79%, respectively. To match a clinical setting, the diagnostic criteria were set at 6.91 and 12.9 for negative and positive diagnosis, respectively. In conclusion, RF′ derived from BIS can discriminate benign tumor and cancers, and integrated criteria were developed for diagnosis.


Url:
DOI: 10.1097/MD.0000000000005970
PubMed: 28121948
PubMed Central: 5287972


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors</title>
<author>
<name sortKey="Du, Zhenggui" sort="Du, Zhenggui" uniqKey="Du Z" first="Zhenggui" last="Du">Zhenggui Du</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory of Breast Disease</nlm:aff>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wan, Hangyu" sort="Wan, Hangyu" uniqKey="Wan H" first="Hangyu" last="Wan">Hangyu Wan</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pu, Yang" sort="Pu, Yang" uniqKey="Pu Y" first="Yang" last="Pu">Yang Pu</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory of Breast Disease</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28121948</idno>
<idno type="pmc">5287972</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287972</idno>
<idno type="RBID">PMC:5287972</idno>
<idno type="doi">10.1097/MD.0000000000005970</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">004205</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">004205</idno>
<idno type="wicri:Area/Pmc/Curation">004204</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">004204</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000379</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000379</idno>
<idno type="wicri:Area/Ncbi/Merge">008C53</idno>
<idno type="wicri:Area/Ncbi/Curation">008C53</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">008C53</idno>
<idno type="wicri:doubleKey">0025-7974:2017:Du Z:bioimpedance:spectroscopy:can</idno>
<idno type="wicri:Area/Main/Merge">000750</idno>
<idno type="wicri:Area/Main/Curation">000749</idno>
<idno type="wicri:Area/Main/Exploration">000749</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors</title>
<author>
<name sortKey="Du, Zhenggui" sort="Du, Zhenggui" uniqKey="Du Z" first="Zhenggui" last="Du">Zhenggui Du</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory of Breast Disease</nlm:aff>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wan, Hangyu" sort="Wan, Hangyu" uniqKey="Wan H" first="Hangyu" last="Wan">Hangyu Wan</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pu, Yang" sort="Pu, Yang" uniqKey="Pu Y" first="Yang" last="Pu">Yang Pu</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
<affiliation>
<nlm:aff id="aff1">Department of Breast Surgery</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory of Breast Disease</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medicine</title>
<idno type="ISSN">0025-7974</idno>
<idno type="eISSN">1536-5964</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Intraoperative frozen pathology is critical when a breast tumor is not diagnosed before surgery. However, frozen tumor tissues always present various microscopic morphologies, leading to a high misdiagnose rate from frozen section examination. Thus, we aimed to identify breast tumors using bioimpedance spectroscopy (BIS), a technology that measures the tissues’ impedance. We collected and measured 976 specimens from breast patients during surgery, including 581 breast cancers, 190 benign tumors, and 205 normal mammary gland tissues. After measurement, Cole-Cole curves were generated by a bioimpedance analyzer and parameters
<italic>R</italic>
<sub>0</sub>
/
<italic>R</italic>
<sub>
<italic></italic>
</sub>
,
<italic>f</italic>
<sub>
<italic>c</italic>
</sub>
, and
<italic>α</italic>
were calculated from the curve. The Cole-Cole curves showed a trend to differentiate mammary gland, benign tumors, and cancer. However, there were some curves overlapped with other groups, showing that it is not an ideal model. Subsequent univariate analysis of
<italic>R</italic>
<sub>
<italic>0</italic>
</sub>
/
<italic>R</italic>
<sub>
<italic></italic>
</sub>
,
<italic>f</italic>
<sub>
<italic>c</italic>
</sub>
, and
<italic>α</italic>
showed significant differences between benign tumor and cancer. However, receiver operating characteristic (ROC) analysis indicated the diagnostic value of
<italic>f</italic>
<sub>
<italic>c</italic>
</sub>
and
<italic>R</italic>
<sub>0</sub>
/
<italic>R</italic>
<sub>
<italic></italic>
</sub>
were not superior to frozen sections (area under curve [AUC] = 0.836 and 0.849, respectively), and
<italic>α</italic>
was useless in diagnosis (AUC = 0.596). After further research, we found a scatter diagram that showed a synergistic effect of the
<italic>R</italic>
<sub>0</sub>
/
<italic>R</italic>
<sub>
<italic></italic>
</sub>
and
<italic>f</italic>
<sub>
<italic>c</italic>
</sub>
, in discriminating cancer from benign tumors. Thus, we used multivariate analysis, which revealed that these two parameters were independent predictors, to combine them. A simplified equation,
<italic>RF</italic>
<sup></sup>
= 0.2
<italic>f
<sub>c</sub>
</italic>
+ 3.6
<italic>R</italic>
<sub>0</sub>
/
<italic>R</italic>
<sub></sub>
, based on multivariate analysis was developed. The ROC curve for RF′ showed an AUC = 0.939, and the sensitivity and specificity were 82.62% and 95.79%, respectively. To match a clinical setting, the diagnostic criteria were set at 6.91 and 12.9 for negative and positive diagnosis, respectively. In conclusion, RF′ derived from BIS can discriminate benign tumor and cancers, and integrated criteria were developed for diagnosis.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Fessia, L" uniqKey="Fessia L">L Fessia</name>
</author>
<author>
<name sortKey="Ghiringhello, B" uniqKey="Ghiringhello B">B Ghiringhello</name>
</author>
<author>
<name sortKey="Arisio, R" uniqKey="Arisio R">R Arisio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niu, Y" uniqKey="Niu Y">Y Niu</name>
</author>
<author>
<name sortKey="Fu, Xl" uniqKey="Fu X">XL Fu</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, S" uniqKey="Ahmed S">S Ahmed</name>
</author>
<author>
<name sortKey="Ahmad, M" uniqKey="Ahmad M">M Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K Wang</name>
</author>
<author>
<name sortKey="Ren, Y" uniqKey="Ren Y">Y Ren</name>
</author>
<author>
<name sortKey="Huang, R" uniqKey="Huang R">R Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sultana, N" uniqKey="Sultana N">N Sultana</name>
</author>
<author>
<name sortKey="Kayani, N" uniqKey="Kayani N">N Kayani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jahnke, Hg" uniqKey="Jahnke H">HG Jahnke</name>
</author>
<author>
<name sortKey="Poenick, S" uniqKey="Poenick S">S Poenick</name>
</author>
<author>
<name sortKey="Maschke, J" uniqKey="Maschke J">J Maschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Br" uniqKey="Lee B">BR Lee</name>
</author>
<author>
<name sortKey="Roberts, Ww" uniqKey="Roberts W">WW Roberts</name>
</author>
<author>
<name sortKey="Smith, Dg" uniqKey="Smith D">DG Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murdoch, C" uniqKey="Murdoch C">C Murdoch</name>
</author>
<author>
<name sortKey="Brown, Bh" uniqKey="Brown B">BH Brown</name>
</author>
<author>
<name sortKey="Hearnden, V" uniqKey="Hearnden V">V Hearnden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becher, T" uniqKey="Becher T">T Becher</name>
</author>
<author>
<name sortKey="Vogt, B" uniqKey="Vogt B">B Vogt</name>
</author>
<author>
<name sortKey="Kott, M" uniqKey="Kott M">M Kott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muramatsu, M" uniqKey="Muramatsu M">M Muramatsu</name>
</author>
<author>
<name sortKey="Tsuchiya, A" uniqKey="Tsuchiya A">A Tsuchiya</name>
</author>
<author>
<name sortKey="Ohta, S" uniqKey="Ohta S">S Ohta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, C" uniqKey="Shah C">C Shah</name>
</author>
<author>
<name sortKey="Vicini, Fa" uniqKey="Vicini F">FA Vicini</name>
</author>
<author>
<name sortKey="Arthur, D" uniqKey="Arthur D">D Arthur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, B" uniqKey="Zheng B">B Zheng</name>
</author>
<author>
<name sortKey="Tublin, Me" uniqKey="Tublin M">ME Tublin</name>
</author>
<author>
<name sortKey="Klym, Ah" uniqKey="Klym A">AH Klym</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abiri, H" uniqKey="Abiri H">H Abiri</name>
</author>
<author>
<name sortKey="Abdolahad, M" uniqKey="Abdolahad M">M Abdolahad</name>
</author>
<author>
<name sortKey="Gharooni, M" uniqKey="Gharooni M">M Gharooni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorns, Jm" uniqKey="Jorns J">JM Jorns</name>
</author>
<author>
<name sortKey="Daignault, S" uniqKey="Daignault S">S Daignault</name>
</author>
<author>
<name sortKey="Sabel, Ms" uniqKey="Sabel M">MS Sabel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wightman, Hr" uniqKey="Wightman H">HR Wightman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Printz, C" uniqKey="Printz C">C Printz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osborn, Jb" uniqKey="Osborn J">JB Osborn</name>
</author>
<author>
<name sortKey="Keeney, Gl" uniqKey="Keeney G">GL Keeney</name>
</author>
<author>
<name sortKey="Jakub, Jw" uniqKey="Jakub J">JW Jakub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cendan, Jc" uniqKey="Cendan J">JC Cendan</name>
</author>
<author>
<name sortKey="Coco, D" uniqKey="Coco D">D Coco</name>
</author>
<author>
<name sortKey="Copeland, Em" uniqKey="Copeland E">EM Copeland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boughey, Jc" uniqKey="Boughey J">JC Boughey</name>
</author>
<author>
<name sortKey="Hieken, Tj" uniqKey="Hieken T">TJ Hieken</name>
</author>
<author>
<name sortKey="Jakub, Jw" uniqKey="Jakub J">JW Jakub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mclaughlin, Sa" uniqKey="Mclaughlin S">SA McLaughlin</name>
</author>
<author>
<name sortKey="Ochoa Frongia, Lm" uniqKey="Ochoa Frongia L">LM Ochoa-Frongia</name>
</author>
<author>
<name sortKey="Patil, Sm" uniqKey="Patil S">SM Patil</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<name sortKey="Pu, Yang" sort="Pu, Yang" uniqKey="Pu Y" first="Yang" last="Pu">Yang Pu</name>
<name sortKey="Wan, Hangyu" sort="Wan, Hangyu" uniqKey="Wan H" first="Hangyu" last="Wan">Hangyu Wan</name>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Du, Zhenggui" sort="Du, Zhenggui" uniqKey="Du Z" first="Zhenggui" last="Du">Zhenggui Du</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000749 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000749 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:5287972
   |texte=   Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28121948" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024